Antitumor activity of ZD6126, a novel vascular-targeting agent, is enhanced when combined with ZD1839, an epidermal growth factor receptor tyrosine kinase inhibitor, and potentiates the effects of radiation in a human non-small cell lung cancer xenograft model.

نویسندگان

  • David Raben
  • Cataldo Bianco
  • Vincenzo Damiano
  • Roberto Bianco
  • Davide Melisi
  • Chiara Mignogna
  • Francesco Paolo D'Armiento
  • Luca Cionini
  • A Raffaele Bianco
  • Giampaolo Tortora
  • Fortunato Ciardiello
  • Paul Bunn
چکیده

OBJECTIVE Targeting the tumor vasculature may offer an alternative or complementary therapeutic approach to targeting growth factor signaling in lung cancer. The aim of these studies was to evaluate the antitumor effects in vivo of the combination of ZD6126, a tumor-selective vascular-targeting agent; ZD1839 (gefitinib, Iressa), an epidermal growth factor receptor tyrosine kinase inhibitor; and ionizing radiation in the treatment of non-small cell lung cancer xenograft model. METHODS Athymic nude mice with established flank A549 human non-small cell lung cancer xenograft model xenografts were treated with fractionated radiation therapy, ZD6126, ZD1839, or combinations of each treatment. ZD6126 (150 mg/kg) was given i.p. the day after each course of radiation. Animals treated with ZD1839 received 100 mg/kg per dose per animal, 5 or 7 days/wk for 2 weeks. Immunohistochemistry was done to evaluate the effects on tumor growth using an anti-Ki67 monoclonal antibody. Effects on tumor-induced vascularization were quantified using an anti-factor VIII-related antigen monoclonal antibody. RESULTS ZD6126 attenuated the growth of human A549 flank xenografts compared with untreated animals. Marked antitumor effects were observed when animals were treated with a combination of ZD6126 and fractionated radiation therapy with protracted tumor regression. ZD6126 + ZD1839 resulted in a greater tumor growth delay than either agent alone. Similar additive effects were seen with ZD1839 + fractionated radiation. Finally, the addition of ZD6126 to ZD1839 and radiation therapy seemed to further improve tumor growth control, with a significant tumor growth delay compared with animals treated with single agent or with double combinations. Immunohistochemistry showed that ZD1839 induced a marked reduction in A549 tumor cell proliferation. Both ZD1839 and ZD6126 treatment substantially reduced tumor-induced angiogenesis. ZD6126 caused marked vessel destruction through loss of endothelial cells and thrombosis, substantially increasing the level of necrosis seen when combined with radiation therapy. The combination of radiation therapy, ZD6126, and ZD1839 induced the greatest effects on tumor growth and angiogenesis. CONCLUSION This first report shows that a selective vascular-targeting agent (ZD6126) + an anti-epidermal growth factor receptor agent (ZD1839) and radiation have additive in vivo effects in a human cancer model. Targeting the tumor vasculature offers an excellent strategy to enhance radiation cytotoxicity. Polytargeted therapy with agents that interfere with both growth factor and angiogenic signaling warrants further investigation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancement of antitumor activity of ionizing radiation by combined treatment with the selective epidermal growth factor receptor-tyrosine kinase inhibitor ZD1839 (Iressa).

PURPOSE The epidermal growth factor receptor (EGFR) is expressed in the majority of human epithelial cancers and has been implicated in the development of cancer cell resistance to cyotoxic drugs and to ionizing radiation. EXPERIMENTAL DESIGN We used ZD1839, a selective small molecule EGFR tyrosine kinase inhibitor currently in clinical development. We tested the antiproliferative and the pro...

متن کامل

Combined epidermal growth factor receptor targeting with the tyrosine kinase inhibitor gefitinib (ZD1839) and the monoclonal antibody cetuximab (IMC-C225): superiority over single-agent receptor targeting.

PURPOSE The epidermal growth factor receptor (EGFR) is abnormally activated in cancer and two classes of anti-EGFR agents, monoclonal antibodies and low-molecular-weight tyrosine kinase inhibitors, have shown antitumor activity in patients. Because these two classes of antireceptor agents target the EGFR at different sites, we decided to explore whether the combined administration of gefitinib,...

متن کامل

The epidermal growth factor receptor tyrosine kinase inhibitor ZD1839 selectively potentiates radiation response of human tumors in nude mice, with a marked improvement in therapeutic index.

PURPOSE The epidermal growth factor receptor tyrosine kinase inhibitor ZD1839 (Iressa) markedly potentiates the efficacy of many cytotoxic agents against several human cancer xenografts, irrespective of tumor EGFR expression levels. We subsequently investigated the extent to which ZD1839 might improve radiation therapy (RT) in similar animal models of human cancer within the limits of tolerance...

متن کامل

ZD1839 (Iressa) induces antiangiogenic effects through inhibition of epidermal growth factor receptor tyrosine kinase.

Epidermal growth factor receptor (EGFR) tyrosine kinase is a potential target for anticancer therapy. ZD1839 (Iressa) is a selective inhibitor of EGFR tyrosine kinase. In this study, we investigated the question as to whether the antitumor effect of ZD1839 is partly attributable to antiangiogenic activity and the potential mechanisms involved. Both ZD1839 and SU5416 [a vascular endothelial grow...

متن کامل

AEE788: a dual family epidermal growth factor receptor/ErbB2 and vascular endothelial growth factor receptor tyrosine kinase inhibitor with antitumor and antiangiogenic activity.

Aberrant epidermal growth factor receptor (EGFR) and ErbB2 expression are associated with advanced disease and poor patient prognosis in many tumor types (breast, lung, ovarian, prostate, glioma, gastric, and squamous carcinoma of head and neck). In addition, a constitutively active EGFR type III deletion mutant has been identified in non-small cell lung cancer, glioblastomas, and breast tumors...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cancer therapeutics

دوره 3 8  شماره 

صفحات  -

تاریخ انتشار 2004